Escherichia coli Pyruvate Dehydrogenase Complex Is an Important Component of CXCL10-Mediated Antimicrobial Activity

نویسندگان

  • Kirsten M. Schutte
  • Debra J. Fisher
  • Marie D. Burdick
  • Borna Mehrad
  • Amy J. Mathers
  • Barbara J. Mann
  • Robert K. Nakamoto
  • Molly A. Hughes
  • B. A. McCormick
چکیده

Chemokines are best recognized for their role within the innate immune system as chemotactic cytokines, signaling and recruiting host immune cells to sites of infection. Certain chemokines, such as CXCL10, have been found to play an additional role in innate immunity, mediating CXCR3-independent killing of a diverse array of pathogenic microorganisms. While this is still not clearly understood, elucidating the mechanisms underlying chemokine-mediated antimicrobial activity may facilitate the development of novel therapeutic strategies effective against antibiotic-resistant Gram-negative pathogens. Here, we show that CXCL10 exerts antibacterial effects on clinical and laboratory strains of Escherichia coli and report that disruption of pyruvate dehydrogenase complex (PDHc), which converts pyruvate to acetyl coenzyme A, enables E. coli to resist these antimicrobial effects. Through generation and screening of a transposon mutant library, we identified two mutants with increased resistance to CXCL10, both with unique disruptions of the gene encoding the E1 subunit of PDHc, aceE. Resistance to CXCL10 also occurred following deletion of either aceF or lpdA, genes that encode the remaining two subunits of PDHc. Although PDHc resides within the bacterial cytosol, electron microscopy revealed localization of immunogold-labeled CXCL10 to the bacterial cell surface in both the E. coli parent and aceE deletion mutant strains. Taken together, our findings suggest that while CXCL10 interacts with an as-yet-unidentified component on the cell surface, PDHc is an important mediator of killing by CXCL10. To our knowledge, this is the first description of PDHc as a key bacterial component involved in the antibacterial effect of a chemokine.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular structure of the pyruvate dehydrogenase complex from Escherichia coli K-12.

The pyruvate dehydrogenase core complex from E. coli K-12, defined as the multienzyme complex that can be obtained with a unique polypeptide chain composition, has a molecular weight of 3.75 x 10(6). All results obtained agree with the following numerology. The core complex consists of 48 polypeptide chains. There are 16 chains (molecular weight = 100,000) of the pyruvate dehydrogenase componen...

متن کامل

Studies on Es&e&?& coli Pyruvate Dehydrogenase Complex I. EFFECT OF BROMOPYRUVATE ON THE CATALYTIC ACTIVITIES OF THE COMPLEX*

Bromopyruvate inactivates the pyruvate dehydrogenase complex of Escherichia coli in a thiamine pyrophosphate (TPP)-dependent process. The catalytic activities of the individual enzyme components within the complex are not destroyed by bromopyruvate under similar conditions, but the activities of the pyruvate dehydrogenase and dihydrolipoyl dehydrogenase components are reduced in thiamine pyroph...

متن کامل

Amino acid sequence around lipoic acid residues in the pyruvate dehydrogenase multienzyme complex of Escherichia coli.

Amino-acid sequences around two lipoic acid residues in the lipoate acetyltransferase component of the pyruvate dehydrogenase complex of Escherichia coli were investigated. A single amino acid sequence of 13 residues was found. A repeated amino acid sequence in the lipoate acetyltransferase chain might explain this result.

متن کامل

Mechanism of action of the pyruvate dehydrogenase multienzyme complex from Escherichia coli.

The extent of cooperativity among the polypeptide chain components in the overall reaction catalyzed by the pyruvate dehydrogenase multienzyme complex from Escherichia coli has been studied. Selective inactivation of the pyruvate dehydrogenase component with thiamin thiazolone pyrophosphate demonstrates that no cooperativity between this component and the overall catalytic reaction occurs: the ...

متن کامل

Inhibition of pyruvate:ferredoxin oxidoreductase from Trichomonas vaginalis by pyruvate and its analogues. Comparison with the pyruvate decarboxylase component of the pyruvate dehydrogenase complex.

Pyruvate:ferredoxin oxidoreductase and the pyruvate dehydrogenase multi-enzyme complex both catalyse the CoA-dependent oxidative decarboxylation of pyruvate but differ in size, subunit composition and mechanism. Comparison of the pyruvate:ferredoxin oxidoreductase from the protozoon Trichomonas vaginalis and the pyruvate dehydrogenase component of the Escherichia coli pyruvate dehydrogenase com...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 84  شماره 

صفحات  -

تاریخ انتشار 2016